Baya Djebarri  –  Department of Chemistry, Faculty of Sciences, University of M’hamed Bougara, Algeria
*Fouzia Touahra  –  Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Algeria 
Nadia Aider  –  Département de Chimie, Faculté des Sciences, Université Mouloud Mammeri de Tizi Ouzou, Algeria
Ferroudja Bali  –  Laboratory of Natural Gas Chemistry, Faculty of Chemistry, Université des sciences et de la Technologie Houari-Boumediene, Algeria
Moussa Sehailia  –  Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Algeria
Redouane Chebout  –  Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Algeria
Khaldoun Bachari  –  Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), Algeria
Djamila Halliche  –  Laboratory of Natural Gas Chemistry, Faculty of Chemistry, Université des sciences et de la Technologie Houari-Boumediene, Algeria Received: 1 Jan 2020; Revised: 6 Mar 2020; Accepted: 13 Mar 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.

Bulletin of Chemical Reaction Engineering & Catalysis (BCREC)

Abstract

Herein we study the catalytic activity/stability of a new generation of cheap and readily available Ni and Al-based catalysts using two Mn precursors, namely Mn(NO3)2 and Mn(EDTA)2- complex in the reaction of CO2 reforming of methane. In this respect, Ni/Al2O3 and two types of Ni/MnxOy-Al2O3 catalysts were successfully synthesized and characterized using various analytical techniques: TGA, ICP, XRD, BET, FTIR, TPR-H2, SEM-EDX, TEM, XPS and TPO-O2. Utilization of Mn(EDTA)2- as synthetic precursor successfully furnished Ni/Al2O3-MnxOyY (Y = EDTA) catalyst which was more active during CO2 reforming of methane when compared to Ni/MnxOy-Al2O3 catalyst, synthesized using Mn(NO3)2 precursor. Compared to Ni/MnxOy-Al2O3, Ni/Al2O3-MnxOyY catalyst afforded near-equilibrium conversion values at 700 °C (ca. 95% conversion for CH4 and CO2, and H2/CO = 0.99 over 50 h reaction time). Also, Ni/Al2O3-MnxOyY showed more resistance to carbon formation and sintering; interestingly, after 50 h reaction time, the size of Ni0 particles in Ni/MnxOy-Al2O3 almost doubled while that of Ni/Al2O3-MnxOyY remained unchanged. The elevated conversion of CO2 and CH4 in conjunction with the observed low carbon deposition on the surface of our best catalyst (Ni/Al2O3-MnxOyY) indicated the presence of MnxOy oxide positioning mediated simultaneous in-situ carbon elimination with subsequent generation of oxygen vacant sites on the surface for more CO2 adsorption. Copyright © 2020 BCREC Group. All rights reserved

Keywords: MnxOy; Al2O3; CO2 reforming of methane; carbon resistance

https://ejournal2.undip.ac.id/index.php/bcrec/article/view/6983