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Abstract:  Indolizine  derivatives  hold  essential  biological  functions  and  have  been  researched  for
hypoglycemic, antibacterial,  anti-inflammatory, analgesic, and anti-tumor actions. Indolizine scaffold has
intrigued conjecture and continuous attention and has become an effective parent system for generating
powerful  novel  medication  candidates.  This  research  focused  on  applying  the  quantitative  structure-
electrochemistry relationship (QSER) approach to the half-wave potential (E1/2) for Indolizine derivatives
using theoretical molecular descriptors. After calculating the descriptors and splitting the data into both
sets, training and prediction. The QSER model was constructed using the Genetic Algorithm/Multiple Linear
Regression (GA/MLR) technique, which was used to choose the optimal descriptors for the model. A four-
parameter model has been established. Many assessment procedures, including cross-validation, external
validation,  and  Y-scrambling  testing,  were used  to  assess  the  model's  performance.  Furthermore,  the
applicability  domain  (AD)  was  investigated  using  the  Williams  and  Insubria  graphs  to  assess  the
correctness of the established model's predictions. The constructed model exhibits great goodness-of-fit to
experimental  data,  as well  as  high stability  (R²=0.893,  Q²LOO= 0.851,  Q²LMO=0.843 RMSEtr= 0.052,  s=
0.056). Prediction results show a good agreement with the experimental data of E1/2 (R²ext= 0.912, Q²F1=
0.883, Q²F2= 0.883, Q²F3= 0.919, CCCext= 0.942, RMSEext=0.045).
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INTRODUCTION

Indolizine is a heteroaromatic molecule composed of
two condensed rings (five and six members) and a
bridging  nitrogen  atom  (1).  Indolizine  has  been
referred  to  by  various  names  in  the  literature,
including  pyrindole,  pyrrodine,  pyrrolo[1,2-

a]pyridine,  and  pyrrocoline  (2).  Indolizines
(indolizine derivatives) are heterocyclic compounds
comprised  of  indolizine  heterocyclic  nuclei.
Indolizidines  are  widely  dispersed  in  nature,
particularly  in  plants,  but  aromatic  indolizines  are
uncommon (2).  Heterocycles  possessing  indolizine
cores play an essential role in pharmaceutical  and
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materials  chemistry.  Several  high-performance
materials,  dyes,  and  medicines  are  intrinsically
heterocyclic  (3).  Numerous  pharmacological
activities  have  been  reported  for  indolizines,  like
anti-inflammatory activity  (4),  antiviral  activity (5),
aromatase inhibitory activity (6),  analgesic activity
(7), and anticancer activity (8,9). Indolizine scaffold
has  intrigued  conjecture  and  continuous  attention
and has become a significant parent system for the
generation of novel medication candidates (9).

Electrochemical  techniques  are  helpful  tools  for
studying electron-transfer processes  and may also
provide important information that can contribute to
understanding  various  biological  phenomena  (10).
The oxidation reaction is the most commonly seen
route  during  the  beginning  phase  of  drug
biotransformation. Because of this, electrochemistry
is  often  used  as  a  simulation  technique  in  drug
metabolism investigations (11). Organic compounds'
half-wave  oxidation  potential  (E1/2)  is  a  significant
electrochemical  feature,  which  is  a  constant  that
defines an oxidation-reduction system according to
the definition. The  E1/2  may be used to predict the
electrochemical  properties  of  other  organic
molecules  as  well  (12).  A  typical  electrochemical
technique  used  in  studies  of  electro-oxidation
systems  is  voltammetry  (13).  Since  the  synthesis
and  the  evaluation  of  novel  drugs  based  on
indolizines and their  investigation  by voltammetric
methods  are restricted  in time and cost  (14),  the
construction  of  theoretical  models  to  predict  the
features  of  these  compounds  is  essential  and
required. 

The  quantitative  structure-property  relationship
(QSPR)  approach,  referred  to  as  the  quantitative
structure-electrochemistry  relationship  (QSER),
allows for the prediction and interpretation of E1/2 of
drugs  and  organic  compounds,  based  on  the
relationship  between both their  E1/2 and structural
molecular  descriptors.  These  descriptors  contain
chemical  information  related  to  the  molecule's
physicochemical  features  (15).  QSER  models  are
suitable  because  they  minimize  the  number  of
experiments  by  saving  time  and  money  while
measuring physicochemical or bio-activities. Several
studies on the use of QSPR in electrochemistry have
been  conducted  (16-20).  Hemmateenejad  and
Shamsipur used PCR and PC-ANN to determine the

E1/2 of  69 organic compounds.  They developed an
ideal PC-ANN model that can explain 96% of the E1/2

data variances (16). Nesmerak et al. relate Hammet
substituent constants  and HOMO orbital  energy to
E1/2 of  40  benzoxazines.  They  discovered  a
significant  relationship  between  HOMO  and  E1/2
oxidation.  (17).  Fatemi  et  al.  constructed  a  QSPR
model based on multiple linear regression to predict
E1/2 values  of  15  substituted  nitrobenzenes  (18).
Hemmateenejad and Yazdani used MLR and PCR to
investigate the half-wave reduction potential (E1/2) of
40 steroids (19). Goudarzi et al. (20) used a genetic
algorithm-partial  least  squares  (GA-PLS)  and
stepwise  regression-partial  least  squares  (SR-PLS)
approach  to  estimate  the  half-wave  reduction
potentials of 21 chlorinated organic compounds.

In this work, we have attempted to develop a new
QSER model  by predicting the half-wave oxidation
potential  of  different  sets  of  indolizines.  Our
purposes are: 

1) To investigate the relationship between the half-
wave  oxidation  potentials  of  indolizines  and  their
molecular structures; 

2) To build a precise and stable model with great
predictive  potential  using  a  rapid  and
straightforward method of regression; 

3)  To  predict  E1/2 values  for  different  indolizines
without  experimental  data  using  the  established
model.

MATERIAL AND METHODS 

Dataset 
Fifty-two  structurally  diverse  indolizines  were
selected  for  data;  their  molecular  structures  are
described in Table S1 in supplementary  materials.
Experimental  E1/2 values  were  obtained  from  the
literature (21). Recorded values vary from 0.362 to
0.966 Volts. Table 1 summarizes the data obtained
for indolizine derivatives by cyclic voltammetry (CV).
The cyclic voltammograms were recorded according
to  these  experimental  conditions:  A  platinum disk
electrode (d=1.0 mm).  acetonitrile solutions (1mM)
of  the  substrate  containing  0.1  M  TBATFB  as  the
supporting electrolyte,  and  all  measurements were
performed at 20 °C and at 1 V/s scan rate (21).

Table 1: Cyclic voltammetry data and descriptors values for the studied compounds.
No. E1/2   (V) b T(O..O) SIC4 R8m TPSA(NO)

1 0.386 0 0.869 0.223 37.12

2 0.429 0 0.869 0.378 37.12

3 0.461 0 0.869 0.503 37.12

4 0.385 0 0.83 0.251 37.12

5 0.362 26 0.802 0.274 55.58

6 0.435 0 0.873 0.379 37.12

7 0.446 6 0.878 0.399 46.35
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No. E1/2   (V) b T(O..O) SIC4 R8m TPSA(NO)

8 0.647 5 0.903 0.383 46.35

9 0.671 4 0.903 0.418 46.35

10 0.443 0 0.882 0.458 37.12

11 0.522 0 0.882 0.442 37.12

12 0.45 0 0.91 0.474 37.12

13 0.436 0 0.875 0.346 37.12

14 0.391 0 0.856 0.421 37.12

15 0.492 0 0.878 0.403 46.35

16 0.443 20 0.819 0.343 64.81

17 0.676 8 0.896 0.462 63.42

18 0.688 10 0.907 0.394 63.42

19 0.679 12 0.882 0.386 63.42

20 0.692 0 0.877 0.347 54.19

21 0.77 0 0.875 0.473 71.26

22 0.807 0 0.875 0.594 71.26

23 0.825 0 0.875 0.758 71.26

24 0.74 0 0.816 0.475 71.26

25 0.68 64 0.848 0.486 89.72

26 0.792 0 0.872 0.423 71.26

27 0.773 0 0.879 0.393 71.26

28 0.966 0 0.872 0.729 71.26

29 0.743 0 0.842 0.49 74.5

30 0.776 0 0.875 0.486 71.26

31 0.815 0 0.882 0.525 71.26

32 0.804 18 0.878 0.473 80.49

33 0.477 0 0.872 0.35 47.47

34 0.688 22 0.872 0.485 64.54

35 0.711 22 0.878 0.5 64.54

36 0.411 0 0.816 0.464 47.47

37 0.686 0 0.889 0.248 71.26

38 0.683 0 0.858 0.356 71.26

39 0.791 36 0.875 0.454 89.72

40 0.772 32 0.88 0.485 89.72

41 0.754 34 0.88 0.481 89.72

42 0.782 0 0.901 0.514 71.26

43 0.788 0 0.879 0.457 71.26

44 0.78 0 0.847 0.491 71.26

45 0.809 0 0.903 0.623 71.26

46 0.79 0 0.903 0.615 71.26

47 0.722 0 0.869 0.391 60.36

48 0.669 0 0.869 0.38 60.36

49 0.606 0 0.88 0.429 48.12

50 0.671 0 0.889 0.566 48.12
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No. E1/2   (V) b T(O..O) SIC4 R8m TPSA(NO)

51 0.698 0 0.889 0.691 48.12

52 0.601 0 0.857 0.419 48.12

Generation of Descriptors
ChemDraw 7.0 software (22) was used to sketch the
chemical structures of all molecules. 

The  three-dimensional  geometries  were  optimized
using the semi-empirical PM7 method (23) and the
MOPAC  software  (24)  to  reach  the  low-energy
conformation for each chemical compound. After the
geometric optimization, the Dragon software (V.5.5)
was used to generate more than 3000 descriptors
(25)  from  different  families,  including  topological
descriptors,  molecular  counts,  connection  indices,
information  indices,  2D  autocorrelations,  edge
adjacency  indices,  topological  charge  indices,  and
eigenvalues-based  indices,  among  the  molecular
descriptors generated. Constant or almost constant
descriptor  values  and descriptors  that  were found
highly  correlated  (r  >0.95)  (26)  were  omitted  to
minimize repetitive and unnecessary information.

GA-MLR procedure
The  obtained  descriptors  and  experimental  E1/2

values  were  analyzed  using  a  genetic  algorithm-
multivariate linear regression (GA-MLR). GA (27,28)
is done to explore the feature space and choose the
main  descriptors  related  to  the  compounds'
activities  or properties (E1/2 in this study).   Briefly,
the  GA  is  built  up  of  the  following  fundamental
phases: 1) a vector (chromosome) comprising zeros
and  ones  (genes)  is  produced  with  the  size
corresponding  to  the  number  of  factors;  2)  a
population of chromosomes is randomly generated;
3) the value of fitness function is examined for every
new created chromosomes(The fitness function here
is  the  cross-validation  coefficient  (Q²LOO)  );  4)  the
chromosomes with the better predictions (according
to  their  fitness  function  value)  are  then  used  to
generate  new populations  by  operations  including
selection, crossover and mutation. These phases of
evolution  continue  until  the  halting  criteria  are
fulfilled. After that, the MLR is used to associate the
descriptors chosen by GA with the values of E1/2. The
MLR  provides  an  equation  relating  the  structural
descriptors to the E1/2:

E1/2 = b0 + b1y1 +…+ bnyn (1)
Where  the  intercept  (b0)  and  the  regression
coefficients  of  the  descriptors  (bi)  are  calculated
using  the  least-squares  method.  yi is  the
independent variable or descriptor. 

Validation of QSER model
Following  the  Organization  for  Economic
Cooperation and Development (OECD) guidelines, a
quantitative  structure-activity  relationship  (QSAR)
model  should  give  acceptable  metrics  of  quality,
robustness,  and reliability.  Whereas  a  training  set
provides  the  model's  internal  performance,
reliability is evaluated using a suitable test set (29).

The following statistical metrics (R² and Q²LOO) were
calculated  to  verify  the  model's  accuracy.  R²
evaluates the model's fit to the observed data in the
training set. In other words, R² governs the fit of the
build model. The cross-validation coefficient (Q²LOO),
one  of  the  most  frequent  internal  validation
procedures,  was  calculated  for  the  quantitative
assessment  of  model  robustness.  This  procedure
was repeated for the full training set by eliminating
one  molecule  and  developing  and  verifying  each
molecule's model (29, 30).

(2)

 (3)

Where yi is the experimental  E1/2, ŷi is the value of
E1/2  calculated  by  the  model  equation,  ȳ is  the
average value of E1/2 for the whole set, n is the total
compounds in the training set, and ŷi/i is the value of
E1/2  predicted by the generated model according to
the LOO method.

Internal validation using leave-many-out (LMO) is an
effective method. In theory,  LMO model  validation
employs  fewer  training  sets  than  the  LOO
procedure.  The  LOO  (leave-one-out)  procedure
employs  n  training  sets  of  n-1  objects  in  and
predicts each excluded object in the test set, which
may  be  performed  several  times  owing  to  the
possibility  of  more  combinations  leaving  several
compounds out of the training set. It can reasonably
be inferred that the model obtained is stable if there
is  an  excellent  average  QSPR  model  in  Q²LOO

validation (31). In this work, 30% of the compounds
were separated from the training set randomly.

External  validation  was  used  to  assess  the
developed model's prediction performance based on
a series  of  coefficients:  R2

ext (which  describes  the
correlation  inside  the  validation  set  between  both
predicted  and  experimental  values),  Q2

F1(32),
Q2

F2(33),  Q2
F3  (34,35)  and  the  Concordance

Correlation Coefficient (CCC) (36-38).  This last one
verifies the tiniest variation in predictions between
experimental and external data. Moreover, the root
means  squared  error  (RMSE),  which  recapitulates
the total  error  of  the developed  model,  measures
and compares the reliability  of  predictions in both
the  training  (RMSEtr)  and  the  prediction  set
(RMSEext), defined as follows:
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(4)

One  of  the  most  commonly  used  strategies  for
ensuring the accuracy and robustness of the created
model is Y-scrambling. It is not unusual for a model
with  good  statistical  results  for  training  to  have
fortuitous  correlations  but  descriptors  that  do  not
necessarily relate to the modeled property.  The Y-
scrambling procedure detects these random models.
The  experimental  property  of  the  training  set  is
randomly  mixed,  and  the  learning  algorithm  is
retrained  to  obtain  a  model  using  the  same
descriptors.  Typically,  the  resulting  models  should
have poor efficiency (30).

RESULTS AND DISCUSSION 

Development of the Model 

The  experimental  data  of  the  E1/2 were  randomly
split into two subsets, namely training set (70%) and
prediction  set  (30%).  The  QSARINS  software  used
the  hybrid  Genetic  Algorithm-multiple  linear
regression (GA-MLR) approach on the training set to
build  numerous  linear  models  (39).  The  set  of
parameters  were  used  in  QSARINS,  including  the
population size of 1000, the generation per size of
1000,  the number  of  models  per  size  of  100,  the
mutation rate of 80, the crossover rate of 0.6, and
the QUIK rule of 0.05. As a result, different models of
many  sizes  have  been  generated  based  on  the
statistics  on  the  cross-validation  (Q²LOO),  multiple
correlation coefficients (R²), and standard error (s).
However, some of them may be over-fitted.

Figure  1  depicts  the  effects  of  the  number  of
descriptors  on  R²  and  Q²LOO statistics.  As  seen  in
fig.1, models containing 5 and 6 descriptors do not
significantly improve model statistics. 

Figure 1: The plot of Q²LOO and R² for the obtained models versus the number of descriptors.

Based on figure 1, the model of 4-parameters should
be  chosen  as  the  best  model  defined  by  the
following equation: 

E1/2 (V) = - 1.28 - 0.003 T (O..O) + 1.46 SIC4 +
0.327 R8m+ 0.008 TPSA (NO)            (5)

R²= 0.893, Q²LOO= 0.851, Q²LMO= 0.847, RMSEcv=
0.061, RMSEtr= 0.052, CCCtr= 0.943, RMSEext=

0.045, R²ext= 0.912, Q²F1= 0.883, Q²F2= 0.883, Q²F3=
0.919, CCCext= 0.942, s = 0.0581, F= 66.727.

The  statistics  prove  the  constructed  model's
stability, robustness, and predictive ability (Equation
5). Therefore, the model was accepted with values
of  R²  and CCCtr above 0.7  and 0.85,  respectively.
Moreover,  this  model  has  the  smallest  values  for
RMSEtr and the highest values for CCCtr, indicating
that this model has the lowest error, i.e., the minor
differences from the predicted data. In addition, the
model's Q2

LOO and Q2
LMO values are more significant

than  0.6  and  close  to  R2.  Furthermore,  the
established  model  has  the  lowest  RMSEcv  values,
proving  its  efficiency.  The  built  model's  external
validation  results  showed a  high  predictive  ability
because the R²ext and the CCCext values  are more
significant  than  0.7  and  0.85,  respectively.  Other
external  validation  metrics  (Q²F1,  Q²F2,  and  Q²F3)
show that  they accepted the model  based on the
literature-recommended criteria (38).

The  correlation  matrix  presented  in  table  2  was
examined  to  ensure  that  these  descriptors  are
independent. It is clear from table 2 that none of the
descriptor  pairs  has  a  significant  correlation.  In
addition,  to  check  the  multicollinearity  of  the
descriptors concerned, the Variance Inflation Factor
(VIF)  was  calculated  (40).  From  table  2,  the  VIF
values are less than 5.0, indicating that the selected
descriptors are not collinear. As a result, the model
that has been established is reliable.
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Table 2: The Correlation matrix.

Descriptors Definition T(O..O) SIC4 R8m TPSA(NO) VIF

T(O..O)    Sum of topological distances
between O..O

1 1.653

SIC4
Structural Information

Content index (neighborhood
symmetry of 4-order)

-0.101 1 1.065

R8m R autocorrelation of lag 8 /
weighted by mass

0.051 0.217 1 1.310

TPSA(NO)
Topological polar surface area

using N, O, S and P polar
contributions

0.589 0.05 0.389 1 1.936

Predicted data versus experimental ones and radar
plots  for  training and prediction  sets  are given in
figure 2. The experimental and predicted values are
fairly similar, as illustrated in Fig.2 (left). This model
matches  the  experimental  data  well  (R²  =  0.883,
RMSEtr =  0.052,  for  the  training  set  and  R²ext =
0.912, RMSEext = 0.045, for the prediction set). The

difference between the experimental and predicted
E1/2 in training and prediction sets may be explained
by the degree of overlap between the experimental
and  predicted  E1/2  lines  in  the  radar  plot  (Fig.  2.
Right).  The  radar  plot  shows  a  good  overlap
between experimental and predicted data.

 

Figure 2: Predicted versus experimental values of E1/2 (Left). The radar plot of QSER model (Right).

The residuals of the training and prediction data sets
are represented in Figure 3. As seen in Figure 3, all
residuals  are  scattered  consistently  and  randomly

on both  sides  of  the  zero  line.  Consequently,  the
developed model has no systematic errors.
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Figure 3: The residuals vs. training and prediction values.

The  randomization  test  was  applied  to  avoid
correlations  by  chance  and  to  validate  the
developed  model.  By  generating  two  hundred
models, the results (R²Ysc and Q²Ysc as a function of
Kxy) are reproduced in Figure 4,  where Kxy is  the

overall  correlation  in  the  model  descriptors
(including E1/2). The low R²Ysc and Q²Ysc (0.4) values
indicate  that  the  favorable  results  of  the  created
model were not related to random correlations.

Figure 4: Randomization test.

The applicability domain (AD) belongs to the model
validation  technique,  also  known  as  the  model
prediction  space.  The  AD  was  checked  to:  1)
determine  the  correct  zone  for  model  predictions
such that predictions in this zone are reliable and 2)
use  this  AD  for  making  predictions  of  new
compounds. The Williams plot is a standard graphic
representation  of  the  standardized  residuals  vs.
leverages values (hi). The details of this concept are
defined  in  the  literature  (30,41).  Suppose  a
compound has high leverage (> h*), this compound
will  be out  of  AD.  In  general,  h* equals  3(p+1)/n,
where p is the model’s size and n is the number of
training  compounds.  The  high  standardized

residuals  (>|3SD|  units)  (26)  are  another  criterion
that places a chemical out of AD.

Figure 5 presents the standardized prediction errors
as a function of the values of the leverages (hi). As
shown  in  figure  4,  the  presence  of  an  influential
point (Compound #25) of the training set,  h* equal
0.405.  Thus,  this  compound  can  have  a  positive
leverage  effect  on  the  stability  of  the  model  and
make  it  more  accurate.  We  also  note  that  all
residuals are in the range (± 3 SD) (horizontal lines);
this  denotes  that  the  developed  model  has  an
excellent predictive capacity.

715



Bouarra N et al. JOTCSA. 2022; 9(3): 709-720. RESEARCH ARTICLE

Figure 5: Williams plot of the developed model.

Furthermore, the applicability domain was checked
using the Insubria graph (40), which plots leverage
values vs. predicted values for compounds with no
experimental data. This is useful for visualizing the
proposed  model's  interpolated  and  extrapolated
predictions  for  novel  chemicals  without
experimental  data (51 compounds with no data in
this  work).  The minimum and maximum values  of

the experimental  E1/2 of the training set are always
presented in the graph, a zone of higher reliability,
where predictive ability is good, for both structures
less than  h* and  E1/2  predictions placed within Ymin

and  Ymax.  In  addition,  chemical  predictions  are
extrapolated  and  may  be  less  accurate  if  their
leverages are hi> h* (outside the structural domain
of the training set).

Figure 6: Insubria graph for the developed model: Leverages hi vs. predicted E1/2.

The  Insubria  graph  of  the  developed  model  is
reported in Figure 6. As can be seen in this figure,
the  predictions  for  53%  of  indolizines  from  the
prediction set were located within the model's AD,
suggesting that this model reliably interpolated the
E1/2 predictions. Otherwise, 47% of these compounds
are  outside  the  AD  (hi>h*),  meaning  that  the
predictions obtained are less reliable since they are
extrapolations  from  the  structural  domain  of  the
model. It demonstrates that, with a few exceptions,
the model developed in this study can make reliable
predictions for structurally similar indolizines.

Interpretation of descriptors
The following is  an  order  of  decreasing  descriptor
significance in the model: 
TPSA(NO) (39.7013%) >T(O..O)  (22.9569%) > R8m
(19.6070%) > SIC4 (17.7348%).

TPS(NO) (Topological Polar Surface Area defined by
nitrogen  and  oxygen  contributions)  is  the  most
crucial  descriptor  in  the  constructed  model.  It
belongs  to  the  molecular  properties  descriptor
family,  expressed  as a polar  part  of  the molecule
linked  to  oxygen,  nitrogen,  sulfur  atoms,  and
hydrogen  connected  to  these  heteroatoms  and
specific  charge  interactions  (15,43).  Based  on the
summation  of  the  tabular  polar  fragment  surface
contributions, the topological polar surface area may
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be  calculated  directly  (i.e.,  atoms  regarding  their
bonding  pattern).  TPSA(NO)  has  demonstrated  a
strong correlation (0.826) with half-wave potential in
the  developed  model.  The  positive  TPSA(NO)
coefficient  suggests  that  as  the  topological  polar
surface area increases, the E1/2 increases as well. 

The second important descriptor is T(O..O) (Sum of
the  topological  distance  between  (O..O),  which
belongs to the topological  descriptors  (15,43). The
topological distance is the length (i.e., the number
of  involved  bonds)  of  the  shortest  route  between
two atoms. The equivalent row sum of the distance
matrix, which is the sum of the topological distance
between  the  atom  and  every  other  atom,  is  the
atom's  distance  degree.  The  sum  of  topological
distances between (O..O) is obtained by the sum of
topological  distances  between  all  pairs  of  (O..O)
(15,43).  The  negative  coefficient  of  T(O..O)  in
equation  5  demonstrates  an  inverse  relationship
with  E1/2,  implying  that  decreasing  the  descriptor
value increases E1/2.

The  third  important  descriptor  was  R8m  (the  R
autocorrelation of lag 8 ⁄weighted by atomic masses)
(15,43), which belongs to GETAWAY descriptors. The
GETAWAY  descriptors  are  built  on  the  leverage
matrix,  the  most  widely  used  for  regression
diagnostics  and  the  same  one  determined  in
statistics (42). Via the use of the molecular influence
matrix,  atomic connections by molecular  topology,
and  chemical  information,  these  molecular
descriptors  attempt  to  match  3D  Molecular
Geometry through the use of distinct atomic weights
and  the  use  of  the  molecular  influence  matrix
(atomic mass, polarizability, van der Waals volume
and  electronegativity,  etc.)  (15,43).  The  SIC4
descriptor has a positive sign, indicating that the E1/2

is associated with this descriptor.

The structural information content (neighborhood of
symmetry  of  4-order)  (SIC4)  (15,43)  was  the  last
important descriptor.  This descriptor  is  among the
information indices  determined based on neighbor
degrees  and  edge  multiplicity  for  the  H-included
molecular  graph  (15,43).  The  information  indices
can be used as a quantitative indicator of structural
homogeneity  or  graph  diversity.  Therefore,  it  is
related  to  the  symmetry  associated  with  the
structure.  The  positive  coefficient  of  SIC4  implies
that the E1/2 may grow as SIC4 increases. 

According to our findings, E1/2 of indolizines is mainly
determined by combining the descriptors mentioned
above: molecular properties, topological properties,
GETAWAY  property  descriptors,  and  information
index descriptors.

CONCLUSION

The  available  evidence  in  the  literature  suggests
that  indolizines  comprise  a  substantial  class  of
heterocycles  that  possess  various  intriguing
biological  actions,  including  hypoglycemic,

antibacterial,  analgesic,  and  anti-inflammatory
activities.  The  half-wave  potential  (E1/2)  is  an
essential  electrochemical  characteristic.  It  is  a
valuable  metric  for  determining  the  antioxidant
activity of organic compounds. The primary goal of
this  work  is  to  build  a  quantitative  structure-
electrochemistry  relationship  model  that  could  be
used  to  predict  the  oxidation  half-wave  potential
(E1/2)  of  a  series  of  indolizines  using  the  GA-MLR
approach. The developed model has four descriptors
derived  from  the  structures  of  the  chemical
compounds.  The  proposed  model  has  a  high
statistical  significance.  The  E1/2  predictions  have  a
good  match  with  the  experimental  values.
Furthermore,  the  leverage  approach  assessed  the
model's applicability domain. The developed model
can correctly  predict  the  E1/2  for novel  compounds
that are structurally similar to indolizines, as well as
other  existing  indolizines  with  undefined  E1/2

experimental values.

CONFLICT OF INTEREST

The  authors  declare  that  they  have  no  known
competing  financial  interests  or  personal
relationships that could have appeared to influence
the work reported in this paper.

ACKNOWLEDGMENTS

We thank Prof. Paola Gramatica for the free license
of  QSARINS.  We  are  thankful  to  the  Algerian
Directorate-General  for  Scientific  Research  and
Technological Development (DGRSDT) for providing
financial assistance for this research.

REFERENCES

1. Georgescu  E,  Dumitrascu  F,  Georgescu  F,
Draghici  C,  Barbu  L.  A  Novel  Approach  for  the
Synthesis of 5‐Pyridylindolizine Derivatives via 2‐(2‐
Pyridyl)  pyridinium  Ylides.  Journal  of  Heterocyclic
Chemistry. 2013;50(1):78-82. <  DOI  >  .  

2. Borrows E, Holland D. The Chemistry of the
Pyrrocolines  and  the  Octahydropyrrocolines.
Chemical reviews. 1948;42(3):611-43. <  DOI  >  .

3. Katritzky  A  R,  Rees  C  W,  Scriven  E  F  V,
Lohray  B  B,  Bhushan  V.,  Comprehensive
Heterocyclic  Chemistry  II.  Pergamon
Press;1996 .11628 p. ISBN: 0-08-042072-9.

4. Kitadokoro K, Hagishita S, Sato T, Ohtani M,
Miki  K.  Crystal  structure  of  human  secretory
phospholipase  A2-IIA  complex  with  the  potent
indolizine  inhibitor  120–1032.  The  Journal  of
Biochemistry. 1998;123(4):619-23. <  DOI  >  .

5. De Bolle L, Andrei G, Snoeck R, Zhang Y, Van
Lommel A, Otto M, et al.  Potent, selective and cell-
mediated inhibition  of  human herpesvirus  6  at  an

717

https://doi.org/10.1093/oxfordjournals.jbchem.a021982
https://doi.org/10.1021/cr60133a005
https://doi.org/10.1002/jhet.997


Bouarra N et al. JOTCSA. 2022; 9(3): 709-720. RESEARCH ARTICLE

early stage of viral replication by the non-nucleoside
compound  CMV423.  Biochemical  pharmacology.
2004;67(2):325-36. <  DOI  >  .

6. Sonnet P, Dallemagne P, Guillon J, Engueard
C, Stiebing S, Tangue J, Bureau B, Rault S, Auvray P,
Moslemi  S,  Sourdaine  P,  Séralini  G  E,  New
aromatase  inhibitors.  Synthesis  and  biological
activity of aryl-substituted pyrrolizine and indolizine
derivatives, Bioorg Med Chem. 2000;8 (5):945-955.
<  DOI  >  .

7. Campagna F, Carotti A, Casini G, Macripo M.
Synthesis of new heterocyclic ring systems: indeno
[2, 1-b]-benzo [g] indolizine and indeno [1', 2': 5, 4]
pyrrolo [2, 1-a] phthalazine. Heterocycles (Sendai).
1990;31(1):97-107. <  DOI  >  .

8. Lillelund  VH,  Jensen  HH,  Liang  X,  Bols  M.
Recent  developments  of  transition-state  analogue
glycosidase inhibitors of non-natural product origin.
Chemical reviews. 2002;102(2):515-54. <  DOI  >  .

9. Das  A,  Banik  BK.  Chapter  5  -  Microwave-
assisted  synthesis  of  N-heterocycles.  In:  Das  A,
Banik  B,  editors.  Microwaves  in  Chemistry
Applications: Elsevier; 2021. p. 143-98. <  DOI   >  .

10. Keyzer  H,  Eckert  GM,  Gutmann  F.
Electropharmacology.  CRC  Press;  1990.  432  p.
ISBN:978-0-8493-5409-0.

11. Eberson  L.  Electron-Transfer  Reactions  in
Organic Chemistry. In: Gold V, Bethell  D,  éditeurs.
Advances in Physical  Organic Chemistry [Internet].
Academic Press; 1982. p. 79-185. <  DOI  >  .

12. Guengerich FP, Willard RJ, Shea JP, Richards
LE, Macdonald TL. Mechanism-based inactivation of
cytochrome  P-450  by  heteroatom-substituted
cyclopropanes  and  formation  of  ring-opened
products. Journal of the American Chemical Society.
1984;106(21):6446-7. <  DOI  >  .

13. Scholz F. Electroanalytical Methods: Guide to
Experiments  and  Applications.  Springer  Science  &
Business  Media;  2009.  366  p.  ISBN:978-3-642-
02915-8.

14. Macchiarulo  A,  Costantino  G,  Fringuelli  D,
Vecchiarelli  A,  Schiaffella  F,  Fringuelli  R.  1,  4-
Benzothiazine  and  1,  4-benzoxazine  imidazole
derivatives with antifungal activity: a docking study.
Bioorganic  &  medicinal  chemistry.
2002;10(11):3415-23. <  DOI  >  .

15. Todeschini  R,  Consonni  V.  Handbook  of
Molecular Descriptors. John Wiley & Sons; 2000. 692
p. <  DOI  >  . ISBN: 9783527613106.

16. Hemmateenejad  B,  Shamsipur  M.
Quantitative  structure-electrochemistry  relationship

study  of  some  organic  compounds  using  PC-ANN
and  PCR.  Internet  Electronic  Journal  of  Molecular
Design. 2004;3(6):316-34. <  URL  >  .

17. Nesmerak K, Nemec I, Sticha M, Waisser K,
Palat  K.  Quantitative  structure–property
relationships  of  new  benzoxazines  and  their
electrooxidation  as  a  model  of  metabolic
degradation.  Electrochimica acta.  2005;50(6):1431-
7. <  DOI  >  .

18. Fatemi MH, Hadjmohammadi  MR, Kamel  K,
Biparva  P.  Quantitative  structure–property
relationship prediction of the half-wave potential for
substituted  nitrobenzenes  in  five  nonaqueous
solvents. Bulletin of the Chemical Society of Japan.
2007;80(2):303-6. <  DOI  >  .

19. Hemmateenejad B, Yazdani M. QSPR models
for  half-wave  reduction  potential  of  steroids:  A
comparative  study  between  feature  selection  and
feature extraction from subsets of  or entire set of
descriptors. Analytica Chimica Acta. 2009;634(1):27-
35. <  DOI  >  .

20. Goudarzi  N,  Goodarzi  M,  Hosseini  MM,
Nekooei M. QSPR models for prediction of half wave
potentials  of  some chlorinated organic compounds
using  SR-PLS  and  GA-PLS  methods.  Molecular
Physics. 2009;107(17):1739-44. <  DOI  >  .

21. Teklu  S,  Gundersen  L-L,  Rise  F,  Tilset  M.
Electrochemical  studies  of  biologically  active
indolizines.  Tetrahedron.  2005;61(19):4643-56.
<  DOI  >  .

22. ChemDraw  Utra  “Ultra-chemical  structure
drawing  standard”.  Version  7.  2002.  Copyright
Cambridge Soft Corporation.

23. Stewart  JJ.  Optimization  of  parameters  for
semiempirical methods VI: more modifications to the
NDDO  approximations  and  re-optimization  of
parameters.  Journal  of  molecular  modeling.
2013;19(1):1-32. <  DOI  >  .

24. MOPAC2016,  Stewart  James  J  P,  Stewart
Computational  Chemistry,  Colorado  Springs,  CO,
USA, <  URL  >   (2016).

25. Todeschini R, Consonni V, Mauri A, Pavan M,
DRAGON Software – version 5.4-TALETE srl, (2005).

26. Liu H, Gramatica P. QSAR study of selective
ligands  for  the  thyroid  hormone  receptor  β.
Bioorganic  &  medicinal  chemistry.
2007;15(15):5251-61. <  DOI  >  .

27. Karakaplan M, Avcu FM. A parallel and non-
parallel genetic algorithm for deconvolution of NMR

718

https://doi.org/10.1016/j.bmc.2007.05.016
http://OpenMOPAC.net/
https://doi.org/10.1007/s00894-012-1667-x
https://doi.org/10.1016/j.tet.2005.02.078
https://doi.org/10.1080/00268970903042266
https://doi.org/10.1016/j.aca.2008.11.062
https://doi.org/10.1246/bcsj.80.303
https://doi.org/10.1016/j.electacta.2004.08.031
http://www.biochempress.com/
https://doi.org/10.1002/9783527613106
https://doi.org/10.1016/S0968-0896(02)00263-8
https://doi.org/10.1021/ja00333a071
https://doi.org/10.1016/S0065-3160(08)60139-2
https://doi.org/10.1016/B978-0-12-822895-1.00006-0%20
https://doi.org/10.1021/cr000433k
http://dx.doi.org/10/3987.COM-89-5149
https://doi.org/10.1016/S0968-0896(00)00024-9
https://doi.org/10.1016/j.bcp.2003.08.042


Bouarra N et al. JOTCSA. 2022; 9(3): 709-720. RESEARCH ARTICLE

spectra  peaks.  Chemometrics  and  Intelligent
Laboratory Systems. 2013;125:147-52. <DOI  >  .

28. Avcu  FM,  Karakaplan  M.  Finding  exact
number of peaks in broadband UV-Vis spectra using
curve  fitting  method  based  on  evolutionary
computing.  Journal of the Turkish Chemical Society
Section A: Chemistry. 2020;7(1):117-24. <DOI  >  .

29. Organisation for Economic Co-operation and
Development, Guidance Document on the Validation
of  (Quantitative)  Structure-Activity  Relationships
[(Q)SAR]  Models,ENV/JM/MONO  (2007)  2,  OECD
Publishing, Paris. <  URL  >.  

30. Tropsha  A,  Gramatica  P,  Gombar  VK.  The
importance  of  being  earnest:  validation  is  the
absolute  essential  for  successful  application  and
interpretation  of  QSPR  models.  QSAR  &
Combinatorial Science. 2003;22(1):69-77. <  DOI  >  .

31. De  Lima  Ribeiro  FA,  Ferreira  MMC.  QSPR
models  of  boiling  point,  octanol–water  partition
coefficient  and  retention  time  index  of  polycyclic
aromatic  hydrocarbons.  Journal  of  Molecular
Structure:  THEOCHEM.  2003;663(1-3):109-26.
<  DOI  >  .

32. Gramatica  P.  External  evaluation  of  QSAR
models,  in  addition  to cross‐validation:  verification
of  predictive  capability  on  totally  new  chemicals.
Molecular informatics. 2014;33(4):311-4. <  DOI  >  .
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