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ABSTRACT
In this work, the synthesis of pure and (Ce, Ag) co-doped ZnO was successfully accomplished using a

solvothermal process. The synthesized samples were characterized by ultraviolet–visible

spectroscopy, X-ray diffraction, and scanning electron microscopy. The photocatalytic ability

of the samples is estimated through degradation of tartrazine in aqueous solution under

photocatalytic conditions. The degradation study carried out for a reaction period of 90 min at and a

free pH¼ 6.0 found that dye degradation is 44.82% for pure ZnO and 98.91% for (Ce, Ag) co-doped

ZnO samples, indicating its excellent photocatalytic ability. Tartrazine mineralization was also studied

by calculating the degradation of chemical oxygen demand. The effect of operating parameters such

as catalyst dose, initial concentration of tartrazine, initial reaction pH, and nature of light source has

been optimized for tartrazine degradation as a function of time. The reusability of ZnO and (Ce, Ag)

co-doped ZnO catalysts was studied and its photocatalytic efficiency was found to be unchanged,

even after six cycles of use. The mechanism of photocatalytic activity was also proposed.
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HIGHLIGHTS

• The (Ce, Ag)/ZnO catalyst exhibited outstanding photocatalytic activity.

• The effect of tartrazine concentration on photocatalysis performance was studied.

• The degradation time of tartrazine using (Ce, Ag)/ZnO catalyst is 90 min.

• The reusability of our catalysts ZnO and (Ce, Ag)/ZnO was also explored.
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Figure 1 | Chemical structure of tartrazin
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GRAPHICAL ABSTRACT
INTRODUCTION
e.
Growing consumption coupled with the increasingly declin-

ing supplies of water has driven society and governments to
consider the decontamination of contaminated water as the
source of the usable water for selected household, industrial,
and agriculture usage. The decontamination of wastewater

using advanced oxidation processes (AOP) (Oller et al.
), phytoremediation (Salt et al. ), photocatalysts
(Herrmann et al. ), electrochemical techniques (Brillas

& Martínez-Huitle ), biosorption (Vieira & Volesky
), and nanotechnology (Baruah et al. ) has been
reported as possible techniques for wastewater purification

and solar wastewater treatment (SOWAT) (Igoud et al.
). Many scientists, industrialists, and policymakers
have collaborated to develop materials and technology for

a safe world with the intention of successfully eliminating
dye effluents (Salthammer et al. ; Vaiano et al. ).
The majority of water contaminants are residual colors
found in the effluents from various industries, e.g. paper

and pulp, textile, dye, pharmaceutical, cosmetics, rubber,
paints, and printing industries, etc. (Ali et al. a). Dis-
charge of pollutants from these industries into water

sources poses a major environmental threat across the
world. Not only do pollutants harm the esthetic quality of
water, but they also destroy marine flora and fauna (Kaur

& Singhal ). Tartrazine (C.I. Acid Yellow 23, AY23) is
chosen for the present research as a model pollutant for
such dyes an dius called by other names including E102
(EFSA), FD&C Yellow 5 (FDA-US Food and Drug Adminis-

tration, FDA) or C.I. 19140 (Color Index International). It is
approved as a dye by the FDA (Bhatt et al. ) and is a
widely used azoic dye in the textile, cosmetics, medicinal,
and food industries (Aoudjit et al. ). Many studies have

been published on tartrazine hazards in recent times,
describing its potentially deleterious impact, such as food
allergy, mutagenic, carcinogenic, and photototoxicity

(Abdullah Hashim et al. ; dos Santos et al. ;
Chekir et al. ; Aoudjit et al. ; Ali et al. b).

Tartrazine’s chemical name is trisodium-5 hydroxy-1-

(4-sulfonatophenyl)-4-(4-sulfonatophenylazo)-H-pyrazole-
3-carboxylate and incorporates azo bonding (–N¼N–) in its
form, believed to be metabolized by intestinal bacteria into

sulfanilic acid and aminopyrazolone (Rehman et al. ).
The chemical structure of the tartrazine is presented in
Figure 1.

Advanced oxidation processes (AOPs have been defined

in recent years as effective procedures for obtaining high
oxidation yields from several types of organic compounds.
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These approaches are focused on the production of very

reactive agents such as hydroxyl radicals (OH) that are
highly reactive and fast oxidizing agents (Eo¼ 2.8 V),
capable of mineralizing organic contaminants (Daneshvar

et al. ; Saien & Soleymani ). Semiconductors
based on metal oxides have been widely developed in
recent decades for photocatalytic applications (Guo et al.
; Kamegawa et al. , ; Chen et al. ). The photo-

catalysts may capture photons with energy equal to or
greater than their band gap energy during the photocatalytic
phase to form electrons and holes on the catalyst surface. It

is known that superoxide and hydroxyl radicals are gener-
ated to oxidize organic contaminants by interacting
between holes or electrons and water molecules (Fu et al.
). The photocatalysts in the spectral region can be classi-
fied into two standardized classes according to their
different photocatalytic properties: ultraviolet (UV) and vis-
ible light-responsive photocatalysts (Su et al. ). Among

the various semiconductors, zinc oxide (ZnO) is a photoca-
talyst with a large direct band gap (3.3 eV) and has a high
binding free-excision capacity of 60 meV (Nair et al. ).
Because of these characteristics, ZnO is regarded as one
of the main active photocatalysts, including high initial oper-
ation levels, multiple active sites with high surface reactivity,

low price, and environmental protection (Lam et al. ).
Different strategies were therefore adopted to enhance
photocatalytic activity of ZnO. Doping is well known to

be an effective and easy way of improving the photocatalytic
properties. Surface area variability and dopant ion incorpor-
ation produce lattice defects and band gap energy transition
(Ullah & Dutta ; Kao et al. ), which play an impor-

tant role in metal oxides photocatalytic operations. Doping
transition metals, noble metals, and non-metals is therefore
a very expedient way to improve the photocatalytic activity

(Poongodi et al. ). Modification of noble metal semicon-
ductors has gained tremendous interest because they
improve the reduction cycle and hence the mechanism of

photocatalytic degradation. Silver (Ag) was selected among
the noble metals because of its extraordinary catalytic abil-
ity, non-toxicity, and comparatively cost-effectiveness. Ag

can trap the photogenerated electrons from the semiconduc-
tor and allow holes to form hydroxyl radicals, which results
in the degradation reaction of the present organic species
(Saravanan et al. ).

Rare earth (RE) metals are also strong doping elements
for modifying ZnO’s electronic structure and extending its
visible light absorption. Doping with RE metals is a loca-

lized level of impurity in ZnO’s band structure, and
changes the band structure (Khatamian et al. ). Cerium
om http://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
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(Ce) has received considerable attention from various

lanthanides as a promising dopant for semiconducting
metal oxide materials due to several unique properties and
applications (Chang et al. ; Lamba et al. ; Li et al.
). Ce doping has been found to increase the efficiency
of ZnO in photocatalytic applications. Ce doping facilitates
the formation of crystallite to minimize particle size and
increase the surface area, thereby helping to improve the

efficiency of photodegradation (Rezaei & Habibi-Yangjeh
). Recently, simultaneous doping into semiconductor
materials with two groups of atoms (co-doping) has drawn

significant interest, as it may contribute to higher photocata-
lytic behavior and different characteristics relative to single
element doping into semiconductor oxides (Zhao et al. ).

In this work, in conjunction with ZnO and (Ce, Ag)
co-doped ZnO catalysts, solar-light irradiation has been suc-
cessfully used to efficiently remove tartrazine from polluted
water. The remediation of dyes in effluents employs methods

such as electrochemical treatment, membrane filtration,
adsorption, and hybrid technologies, among others. How-
ever, these technologies lack efficiency and cost-

effectiveness. As a possible solution, this work presents a
photodegradation of tartrazine dye favored by natural sun-
light on pure and (Ce, Ag) co-doped ZnO catalysts.
MATERIALS AND METHODS

Chemical reagents

Tartrazine (M¼ 534.36 g/mol, assay: �85%) also known as
Yellow 23 (Figure 1), with the chemical formula C16H9N4-

Na3O9S2 and a maximum absorption at the wavelength at

427 nm was purchased from ACROS organics (USA).
Hydrochloric acid (HCl) and sodium hydroxide (NaOH)
used in this study were laboratory grade products. Deionized
water was used for all experiments.
Materials

A 100 mL borosilicate glass Erlenmeyer flask was used as the
reactor. Global solar radiation intensity was measured with a
Kipp and Zonen CMP11 pyranometer, pH value was

measured using CONSORT C3010 multi-parameter analyzer,
tartrazine dye concentration was determined using Shimadzu
UV1800 Spectrophotometer and chemical oxygen demand

(COD) was measured by type (DR 1900 LANGE HACH,
Düsseldorf, Germany) spectrophotometer.
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The experiments were performed using solar irradiation

at Bou-Ismail, Algeria, during April 2020 between 10:00
and 16:00 at the Solar Equipment Development Unit,
situated 30 km west of Algiers (longitude: 2 W 420 N,

latitude: 36 W 390 E, altitude: 5 m). The entire system is
linked to photovoltaic panels providing energy for the
alimentation (agitation) of our system for degradation of
tartrazine.
Figure 2 | Schematic representation of the experimental setup used for tartrazine

degradation assays under sunlight radiation.
EXPERIMENTAL

Catalysts preparation

A sufficient quantity of Zn(NO3)2•4H2O was dissolved in
bi-distilled water. The pH of the solution was brought to
7.5 by drop-wise addition of ammonium hydroxide sol-

ution (25%). The reaction mixture was then stirred for
2 h at room temperature with 100 rpm and transferred to
a steel autoclave coated with Teflon and kept at 120 �C
for 22 h. The product was washed several times using a

vacuum filtration unit with bi-distilled water, filtered and
dried at 80 �C overnight. The co-doped ZnO nanoparticles
(heterojunction) were also prepared according to the same

procedure, except that the products of cerium chlorides
and silver nitrates (CeCl3 and AgNO3) were added.
Catalysts characterization

The X-ray diffraction (XRD) patterns and scanning electron

microscope (SEM) micrographs of the samples prepared as
mentioned above were recorded. The XRD patterns were
recorded on a Siemens D-5000 diffractometer with Cu-Kα

radiation (λ¼ 1.5418 Å) and surface morphology was
studied using SEM. The UV–Vis absorption spectra
were measured by UV–Vis spectrophotometer (Shimadzu

UV-2401).

Photocatalytic degradation of tartrazine

Photocatalytic process was conducted through batch
mode at room temperature using the setup as shown in
Figure 2. Dye solutions of desired concentrations (10,

20, and 30 mg/L) were prepared by dissolving the corre-
sponding amount of tartrazine in distilled water. The
concentrations of the dye solution have been selected

as per the concentration given in the literature (Tassalit
et al. ; Aoudjit et al. ; Chekir et al. ).
://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
The optimal catalyst dose of 1 g/L at 15 min time inter-
vals was used for extraction of the sample in the

present study. The pH of the solution was adjusted by
the addition of NaOH or HCl to the solution. To carry
out the photochemical reaction, an appropriate amount

of ZnO and (Ce, Ag) co-doped ZnO (1 g/L) was added
to tartrazine solutions in a magnetic stirrer. Each
sample was kept in the dark for 20 min. After ensuring
the adsorption equilibrium, the reactor was exposed to

the sunlight for 2 h. Thereafter, 3 mL aliquot of tartrazine
solution was withdrawn from the reaction mixture at
15 min time intervals and filtered with a Millipore mem-

brane with a pore size¼ 0.45 μm prior the analysis to the
separation of the catalyst. This is followed by measure-
ment of absorbance of the solution at 427 nm by UV–

Vis spectrophotometer. The percentage of degradation
was estimated using the following equation

Degradation (%) ¼ C0 � Ct

C0
× 100 (1)

where C0 is the initial dye concentration and Ct is

the tartrazine concentration at certain reaction time
t (min).
COD measurements

In order to assess the mineralization rate of the tartrazine
under the optimum condition free pH¼ 6.0 of the solution,
1 g/L dose of catalysts was used. The tartrazine concen-

tration CTART¼ 10 mg/L and solar ultraviolet radiation
(853 W/m2) was used. The samples were taken from the
beginning and end of the reaction and analyzed by COD

based on the oxidation of organic materials by an excess
of potassium dichromate (K2Cr2O7), in acidic medium and
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boiling, in the presence of silver sulfate (Ag2SO4) and mer-

cury sulfate (HgSO4). The COD abatement rate given in
percentage (%) is calculated by the following equation as
given by (Zioui et al. ):

COD (%) ¼ COD0 � CODt

COD0
× 100, (2)

where COD0 and CODt are the initial COD and COD at

time t, respectively.
Figure 3 | XRD patterns of ZnO and (Ce, Ag) co-doped ZnO.
RESULTS AND DISCUSSION

Characterization of catalyst

XRD

XRD analysis of samples was carried out to determine the
crystal structures and phase purities of ZnO and (Ce, Ag)/
ZnO. The XRD patterns are shown in Figure 3. The main

diffraction peaks for pure ZnO were observed at 2θ values
of 31.73, 34.37, 36.21, 47.48, 56.53, 62.77, 66.30, 67.86,
69.00, 72.46, and 76.86 corresponding to the lattice plane

(100), (002), (101), (102), (110), (103), (200), (212), (201),
(004), and (202)planes of wurtzite ZnO hexagonal phase
(space group, P63mc), which are in good agreement with
the literature values (PDF 89-1397) (Kumar et al. ).

For (Ce, Ag)/ZnO, diffraction peaks well suited to (100),
(002), (101), (102), (110), (103), (200), (212), (201), (004),
and (202) planes at 2θ values were same as that of wurtzite

ZnO hexagonal phase. There were additional diffraction
peaks observed corresponding to the Ag and CeO2. The dif-
fraction peaks at 2θ values 38.11, 44.30, 64.44, and 77.39,

labeled with ‘◊’ matched with the (111), (200), (220), and
(311) crystalline planes of cubic phase (space group, Fm-
3 m) of metallic Ag (PDF 65-2871) (Güy & Özacar ),

and the diffraction peaks at 2θ values 27.79, 32.20, 46.18,
and 56.09, marked with ‘*’ matched with the (222), (400),
(440), and (631) planes of cubic phase (Ia-3) of CeO2

(PDF 89-8429) (Wen et al. ). XRD analysis therefore

suggests that the wurtzite ZnO hexagonal phase is present
in the pure ZnO samples and in the (Ag, Ce) co-doped
samples, wurtzite ZnO hexagonal phase along with the met-

allic Ag in cubic phase, and CeO2 in cubic phase is also
present.
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SEM analysis

The surface morphology of the samples was obtained by
SEM and is presented in Figure 4. From Figure 4(a) and
4(b), hexagonal rods of ZnO and (Ce, Ag) co-doped ZnO

catalysts can be observed. However, the average size of
the crystallites in the pure ZnO sample is considerably
larger compared to the average size in the (Ce, Ag) co-

doped ZnO sample. The decrease in crystallite size with
the co-doping of Ce and Ag leads to an increase in the
specific surface area compared to the undoped samples.

Additionally, the surface of (Ce, Ag) co-doped ZnO samples
have numerous fibrous columns anchored from the ZnO
surface, which is conducive to forming the heterojunction
between ZnO and (Ce, Ag) dopants. The presence of such

fibrous columns on the ZnO surface increases the total sur-
face area of co-doped samples, and therefore increases the
catalytic performance of the samples immensely.

Optical proprieties

Figure 5(a) shows the UV-Vis absorption spectra of the ZnO
and (Ce, Ag)/ZnO. Interestingly, with the Ag and Ce co-

doping, the absorption peak changes from 283 to 352 nm.
This change in the absorption peak to the higher wavelength
results in the decrease of band gap of (Ce, Ag)/ZnO. A single

absorption peak for (Ce, Ag)/ZnO shows that Ce and Ag are
doped effectively into ZnO lattices and that the sample has
strong optical properties (Kumar et al. ).

The optical band gap (Eg) of pure and (Ce, Ag) co-doped
ZnO was calculated using the Tauc relationship (J. Tauc
et al.):

(αhν)2 ¼ A(hν� Eg) (3)



Figure 4 | (a) SEM micrograph of ZnO and (b) (Ce, Ag) co-doped ZnO.

Figure 5 | (a) Optical absorbance spectra of ZnO and (Ce, Ag)/ZnO, (b) plot of (αhν)2 as a function of incident photon energy.
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The Tauc plot to calculate the optical band gap of

the samples is presented in Figure 5(b). The band gap is
determined by extrapolating the linear portion of the
plot between (αhν)2 and hv to intersect the x-axis. The

value of the optical band gap energy of the pure and
(Ce, Ag) co-doped ZnO samples decreases from 3.08 to
2.82 eV, respectively. The decrease in the band gap of
the semiconductor is due to the additional impurity

levels generated in the doped samples. The band gap
energy value was decreased for the (Ce, Ag)/ZnO samples.
This result reveals that the co-doped ZnO absorbs UV and

visible light. Therefore, the optical absorption property
attributes that the (Ce, Ag)/ZnO photocatalyst could be
promising in visible light photocatalysis (Poongodi et al.
).
://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
PHOTODEGRADATION OF TARTRAZINE

Evaluation of treatment method on the degradation of
tartrazine

Preliminary experiments were carried out to determine the

photocatalysis performance. Three main removal pro-
cedures were tested during our analysis for the efficacy of
tartrazine degradation in polluted water. The first pro-
cedure was carried out in the presence of catalyst without

radiation based on the adsorption; the second procedure
was performed in the presence of solar radiation without
catalyst based on the photolysis; the third procedure was

carried out under solar radiation (with sunlight) and in
the presence of catalyst based on photocatalysis.
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Degradation of tartrazine under these processes for pure

ZnO and (Ce-Ag) co-doped ZnO is presented in Figure 6.
It can be observed that photocatalysis is impactful in photo-
degradation of tartrazine, whereas the effect of adsorption

and photolysis is negligible. These results are in good agree-
ment with similar works (Tanaka et al. ; Chekir et al.
; Aoudjit et al. ). In our azo dye degradation
studies, the degradation of tartrazine under photocatalytic

conditions in the presence of pure ZnO catalysts for a reac-
tion time of 90 min is 44.82% and 98.91% for (Ce-Ag) co-
doped ZnO. The degradation in presence of ZnO increases

rapidly for 30 min until it reaches 24%. Thereafter, it slows
down for 90 min until reaching 44.82%. For (Ce–Ag)
co-doped ZnO, the degradation of the azo dye saturates

in about 45 min to ∼95% and takes almost 90 min for
100% degradation. However, during photolysis or adsorp-
tion, no signs of removal were observed, as indicated in
Figure 6. Further investigations and refinement of different

process parameters and optimal conditions used for the
effective extraction of tartrazine from polluted water were
taken.

Effect of radiation source

The effect of irradiation type on the photocatalytic degra-
dation of tartrazine by ZnO and (Ce, Ag) co-doped ZnO
was studied by artificial irradiation (PHILPS PL-L

24 W/10/4P UV lamps, λmax¼ 365 nm and I¼ 18.6 W/
m2), and solar UV radiation using a global UV radiometer
(Kipp & Zonzn, CMP11, I¼ 853 W/m2). As seen in

Figure 7(b), after 90 min of exposure, the degradation per-
centage of tartrazine due to (Ce, Ag) co-doped ZnO
photocatalysts was 98.91%, and 98.88%, under sunlight
Figure 6 | Degradation of tartrazine under different processes (CTART¼ 10 mg/L, Ccatalyst¼ 1 g/
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and UV lamp, respectively. The corresponding values for

the degradation of the tartrazine due to ZnO are found to
be 42.02% and 13.79%, respectively, as shown in Figure 7(a).
Comparison of the photocatalytic efficiency ZnO and (Ce,

Ag) co-doped ZnO irradiated with the sunlight and UV radi-
ation under identical experimental condition is presented in
Figure 8. These results indicate a remarkable photocatalytic
activity of (Ce, Ag) co-doped ZnO photocatalyst. The poss-

ible mechanism for the degradation efficiency of the
photocatalyst is presented as follows: upon absorption of
light by the photocatalyst, the electrons from the valence

band are transferred to the conduction band, along with
the production of holes in the valence band. The photo-cre-
ated electrons reduce the oxygen to form superoxide

radicals (O2�) and at the same time holes present in the
valence band oxidize the water molecules/OH� ions to pro-
duce hydroxyl radicals (OH.). These superoxide and
hydroxyl radicals participate in the degradation process of

tartrazine dye. It was previously observed that photogener-
ated electrons that move to the conduction band are
mostly unstable and quickly go back to the valence band.

Therefore, they can recombine with the holes by going to
the valence band and decrease the quantum efficiency of
photocatalysis. In this study, enhancement in photocatalytic

performance of (Ag, Ce) co-doped ZnO can be attributed to
the combined effect of Ag and Ce co-doping. The localized
electronic states of dopant ions (Agþ,Ce3þ) may be acting

as charge trap sites for photo-created electron-hole pairs
(Khalid et al. ).

The use of natural sunlight, instead of the artificial UV
lamp, may help greatly in reducing the cost of photocatalytic

oxidation compared to some alternative technologies. The
availability of solar UV-irradiation at a specific geographical
L, and pH¼ 6). (a) For ZnO and (b) for (Ce, Ag) co-doped ZnO under solar radiation.



Figure 7 | Degradation of tartrazine exposed to different sources of light (CTART¼ 10 mg/L, Ccatalyst¼ 1 g/L, and pH¼ 6. (a) For (Ce, Ag) co-doped ZnO and (b) for ZnO.

Figure 8 | Comparison of degradation of tartrazine exposed to different sources of light (CTART¼ 10 mg/L, and catalyst¼ 1 g/L). (a) Sunlight irradiation and (b) UV lamp irradiation.
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area, like Algeria, represents a major factor in determining
the cost of a solar-based system. Algeria is characterized
by an important solar potential and an annual duration of

sunshine exceeding (3,000 h/y). Solar photocatalysis can
be recommended for its low-cost energy and high efficiency.
These results are in good agreement with similar works

reported in the literature (Aoudjit et al. ; Zioui et al.
; Ghribi et al. ).

Effect of solution pH

Photodegradation is well known to be influenced by the
adsorption of the dye on the catalyst surface. The dye’s adsorp-

tion is strongly influenced by the pH of the solution
(Velmurugan & Swaminathan ; Krishnakumar et al. ;
://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
Subash et al. ). Thus, in this study the effect of pH on
tartrazine photodegradation was studied in an aqueous
medium. The experiments were conducted at a concentration

of 10 mg/L tartrazine to cover a 3.0� pH� 9.0 for 90 min of
sunlight irradiation. The effect of the pH on the photodegrada-
tion of tartrazine in the presence of ZnO and (Ce, Ag)/ZnO

exposed to the sunlight is presented in Figure 9. Looking at
the Figure 9(a), it can be observed that the degradation of tar-
trazine molecule is very high in the presence of (Ce, Ag)/ZnO
catalyst throughout the pH range. The degradation percentage

of tartrazine increases almost linearly as a function of time at
different pH values, with a maximum at pH¼ 9.0 as shown in
Figure 8(b).

The interpretation of pH effects on dye photodegradation
process output is a very challenging task due to its



Figure 9 | Sunlight photodegradation of tartrazine at different pH (CTART¼ 10 mg/L and catalyst¼ 1 g/L). (a) For (Ce, Ag) co-doped ZnO and (b) for ZnO.
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dependence on various physical and chemical parameters.
First, the influence of pH of the solution on the rate of degra-
dation can be explained primarily by the processes of

sorption–desorption in the semiconductor particle sheet
(Chekir et al. ). The azo dye used in the present exper-
iment was anionic dye, and under laboratory conditions

was negatively charged. For this reason, it is best to use the
solution’s free pH. The photocatalytic degradation of tartra-
zine at free pH is 98.91% for (Ce, Ag) co-doped ZnO catalyst.

Effect of initial concentration of tartrazine

Figure 10 shows the effect of initial concentration of tartra-
zine on the rate of photodegradation at free pH¼ 6.0 for a

reaction time of 90 min. The increase in the amount of tar-
trazine from 10 to 30 mg/L shows decreased degradation
Figure 10 | Photodegradation of tartrazine with time at different concentrations in sunlight (fr

om http://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf

3

percentage, indicating slower degradation kinetics for ZnO
catalyst in the presence of sunlight.

For the (Ce-Ag) co-doped ZnO catalyst, the degra-

dation percentage decreases with an increase in the
tartrazine concentration. With an increase in the concen-
tration of tartrazine, the degradation behavior changes

from initial rapid degradation at 10 mg/L to linear at
30 mg/L. After 90 min, 12% reduction in the degradation
of the 30 mg/L tartrazine solution was observed. This

could be because of insufficient quantity of generated
OH. radicals present in the solution, which influence the
photodegradation process favorably (Li et al. ;
Farzadkia et al. ; Tran et al. ). Degradation rate

is proportional to the available surface of the catalyst for
the development of electron-hole pairs to generate
hydroxyl radicals. In the present study, for the constant
ee pH¼ 6 and catalyst¼ 1 g/L). (a) ZnO and (b) (Ce, Ag) co-doped ZnO.
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volume of catalyst, the number of hydroxyl radicals pro-

duced remains the same, although the concentration of
dye in the solution increases. Consequently, the ratio of
hydroxyl radicals to tartrazine molecules decreases

with the increase in dye concentration ( Jamil & Sharaf
El-Deen ). Additionally, the decrease in dye degra-
dation has been attributed to a decrease in light
penetration into the solution (Krishnakumar et al. ).
The amount of the dye adsorbed on the catalytic surface
increases with the increase in the dye concentration in sol-
ution. This higher particle density of the dye molecules in

the solution reduces the penetration depth of incident
photon in the dye solution. At high dye concentrations,
the adsorbed dyemolecules absorb the majority of the inci-

dent visible light, effectively preventing the light reaching
the catalyst. This shielding of the catalyst from the
sunlight can therefore also decrease photocatalytic degra-
dation (Davis et al. ).
Effect of photocatalysts dose

The influence of the catalyst dose on the tartrazine photo-
degradation is illustrated in Figure 11. The catalyst dose
varies from 0.5 g/L to 2 g/L. The degradation increases
with the increase in the dose and the maximum degra-

dation occurs for an optimal dose of 1 g/L. This is due to
increased availability of active sites on the photocatalyst
surface and hydroxyl radicals (OH.) in the reaction mix-

ture. However, a further increase of catalyst dose beyond
1 g/L decreases the catalytic degradation. In fact, an
excess amount of catalyst could notably inhibit the
Figure 11 | Photodegradation of tartrazine at different concentration of catalyst in sunlight (fr

://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
penetration of solar light into the tartarazine solution,

and an increase in the photocatalyst suspension leads to a
decrease in the generation of oxidizing agents. Conse-
quently, 1 g/L catalyst dose was chosen as the optimum

dose for further experiments.
Recyclability of catalysts

The recyclability of ZnO and (Ce, Ag) co-doped ZnO (1 g/L)
catalysts used in the photodegradation of tartrazine (CTART¼
10 mg/L) at free pH¼ 6.0 has also been studied under sun-

light irradiation over the course of 90 min and the results
are presented in Figure 12. To reuse the photocatalyst in mul-
tiple cycles, the photocatalyst was collected, washed with
distilled water, dried, and then used in a new experimental

cycle. After six cycles of treatment, the catalyst still main-
tained good photodegradation capacity. The degradation
percentage of tartrazine during the six cycles were 98.91%,

98.89%, 98.36%, 97.86%, 97.36%, and 97.16% for (Ce, Ag)
co-doped ZnO, as shown in Figure 12(b), and 42.02%,
42.02%, 40.86%, 40.30%, 39.87%, and 39.12% for ZnO as

shown in Figure 12(a). This confirms the excellent reusability
of (Ce, Ag) co-doped ZnO photocatalysts. The high degra-
dation activity could be attributed to the highly stable
nature of (Ce, Ag) co-doped ZnO, while its surface remained

resistant to agglomeration or sintering under the experimental
conditions specified.

Su et al. () reported similar findings for ZnO/Ag–

Ag2O based catalyst on Congo Red degradation after five
cycles. Subash et al. () reported strong recyclability of cat-
alysts when using Ce co-doped Ag–ZnO under natural sunlight
ee pH¼ 6 and CTART¼ 10 mg/L). (a) ZnO and (b) (Ce, Ag) co-doped ZnO.



Table 1 | COD value for pure ZnO and (Ce, Ag) co-doped ZnO and respective removal rate

(%) for tartrazine after degradation under sun irradiation

COD Initial Final %

ZnO 102 71 30.39

(Ce, Ag)/ZnO 102 22 78.43

Figure 12 | Photodegradation of tartrazine over six catalytic cycles in sunlight (CTART¼ 10 mg/L, Ccatalyst¼ 1 g/L and pH¼ 6). (a) ZnO and (b) (Ce, Ag) co-doped ZnO.
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for Naphtol Blue Black dye photodegradation. In metro-
nidazole photodegradation, Dong et al. () reported

strong recyclability of catalysts when using ZnO/reduced
graphene oxide under visible light.

COD analysis

The degradation of the tartrazine was also analyzed using

COD values to confirm the mineralization of tartrazine.
All parameters of the reaction such as (tartrazine
concentration (CTART¼ 10 mg/L), solar UV radiation

(853 W/m2), dose of catalysts (1 g/L), and free pH¼ 6 con-
ditions over the course of 90 min) were kept constant
during the experiments.

Table 1 shows the percentage of COD reductions
obtained in this study. After 90 min, the value of COD with
pure ZnO and (Ce, Ag) co-doped ZnO irradiation was
30.39% and 78.43%, respectively, indicating the dye mineral-

ization and the higher potential of (Ce, Ag) co-doped ZnO
system for the removal of dyes from wastewater.

Kinetic analysis as a function of tartrazine
concentration

The kinetics of photocatalytic degradation of tartrazine
can be depicted using the first-order equation given by

Equation (4) (Nezamzadeh-Ejhieh & Hushmandrad ;
Aoudjit et al. ; Omrani & Nezamzadeh-Ejhieh ;
Martins et al. ).

ln
C0

Ct

� �
¼ Kappt (4)
om http://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
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where Kapp is the pseudo-first-order rate constant (min�1),

C0 is the initial concentration; Ct is the concentration of tar-
trazine at time t (min). The estimated pseudo-first-order rate
constant and corresponding R2 values are presented in

Table 2. With an increase in dye concentration from 10 to
30 mg/L, the degradation rate constant decreases from
0.006 to 0.001 min�1 in the case of ZnO and from 0.057

to 0.019 min�1 in the case of (Ce, Ag)/ZnO.
MECHANISM OF DEGRADATION

In general, photocatalytic degradation by semiconductors

involves three steps: (1) irradiation of the semiconducting
catalyst causes the transfer of electrons from the valence
band (VB) to the conduction band (CB), creating equal

number of empty sites (holes) in the valance band; (2) the
excited electrons and holes then migrate to the catalyst sur-
face; and (3) the excited electrons and holes react with free
radicals such as OH�, and O2

� resulting in oxidation and

reduction processes, respectively. Such free radicals further
react with organic dye and degrade them in the process to
components, harmless compounds such as CO2, H2O, and

inorganic by-products (Beura & Thangadurai ; Kumar
et al. ).



Table 2 | Effect of initial dye concentration (C0) on photocatalytic degradation efficiency (%) and apparent reaction rate (Kapp) of tartrazine

C0 (mg/L)

ZnO catalyst (Ce, Ag) co-doped ZnO catalyst

Degradation (%) Kapp (min�1) R2 Degradation (%) Kapp (min�1) R2

10 42.02 0.006 0.94 98.91 0.057 0.88

20 21.36 0.002 0.94 94.88 0.033 0.98

30 10.22 0.001 0.88 86.50 0.019 0.98
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For pure ZnO catalyst

Various chemical reactions that produce reactive species

during degradation of the photocatalytic dye can be sum-
marized as follows (Tunesi & Anderson ; Zhao et al.
; Chen et al. ; Fujishima et al. ; Habba et al.
; Kumaran & Muraleedharan ; Ani et al. ):

ZnOþ hυ ! hþ
VB þ e�CB

OH�
(ads)

þ hþ
VB ! OH�

(ads)

H2Oþ hþ
VB ! OH� þHþ

2OH� ! H2O2

2Hþ þO2 þ 2e�CB ! H2O2

2H2Oþ 2hþ
VB ! H2O2 þ 2Hþ

H2O2 þ hυ ! 2OH�

O2(ads) þ e�CB ! O�
2�

O�
2 þ e�CB þ 2Hþ ! H2O2

O�
2 �þH2O2 ! OH� þOH� þO2

O�
2 �þHþ ! OOH�

O�
2 �þhþ

VB !1 O2

OOH� þO��
2 þHþ ! O2 þH2O2

(tartrazine dye)ads þ hυ ! (tartrazine dye)�ads

(tartrazine dye)�ads þ ZnO ! (tartrazine dye)�þads þ ZnO(e�)

(tartrazine dye)�ads þO2 ! (tartrazine dye)ads þ1O2

(tartrazine dye)þ ZnO (e�) ! (tartrazine dye)��

(tartrazine dye)þ hþ
VB ! (tartrazine dye)�þ
://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
Figure 13 demonstrates the mechanistic interpretation
of the photocatalytic degradation reaction of tartrazine dye
in the presence of photocatalyst ZnO under solar radiation

onto the semiconductor.
For (Ce, Ag)/ZnO catalyst

The chemical reactions producing reactive chemical species
mentioned above during the photocatalytic degradation of
tartrazine by ZnO are also generated during the presence
of (Ce, Ag) co-doped ZnO. In the case of (Ce, Ag)/ZnO cat-

alyst, the improvement of photocatalysis in the presence of
Ag and Ce has been presented as follows.

Figure 14 demonstrates the mechanistic interpretation

of the photocatalytic reaction for the photocatalyst (Ce,
Ag) co-doped ZnO. When solar radiation illuminates the
semiconductor. The presence of Ag and Ce simul-

taneously traps the electron from the CB of ZnO which
suppresses the recombination of the electron-hole. The
photocatalytic process occurs in which oxygen adsorbed
on the photocatalyst surface traps the photogenerated

electron (Mills & McGrady ). The transition of the
electron to oxygen can be the rate-determining step in
the photocatalytic reaction of semiconductors (Mura

et al. ). The role of Ag in the photocatalytic process
of trapping the electrons from ZnO’s CB during solar
irradiation is reported in the literature (Chen & Nickel

). The doped Ag in the ZnO photocatalyst can func-
tion as an electron collector to increase the lifespan of
charge carriers because the Fermi energy level of the

noble metal (Ag) is still greater than that of the photoca-
talyst semiconductor (Zhang et al. ). Improvement of
(Ce, Ag) co-doped ZnO photocatalytic reaction is due to
a synergistic interaction between Ag and Ce in ZnO.

Photocatalytic performance of (Ce, Ag) co-doped ZnO is
found to be better than that of ZnO.

For the Ce-doped ZnO photocatalyst, the Ce4þ ions

incorporated in the ZnO lattice are intended to absorb
photo-excited electrons from the conduction band of ZnO



Figure 14 | Mechanism of degradation of tartrazine by (Ce, Ag)/ZnO.

Figure 13 | Mechanism of degradation of tartrazine by ZnO.
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and reduce them to Ce3þ ions. Reduced Ce3þ ions are oxi-

dized by passing the electron to the adsorbed O2

molecules, producing the radical superoxide (O2
0�)

(Coronado et al. ; Kannadasan et al. ; Kuzhalosai
et al. ). However, Ce4þ readily catches the photo-excited
om http://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
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electron in the Ce-doped ZnO catalyst. This is because Ce4þ

is a Lewis acidic entity and is better at trapping electrons
than the oxygen molecule (O2) (Coronado et al. ). The
electrons at Ce4þ sites are subsequently passed to the

adsorbed O2 by oxidation, which increases the simple
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recombination of electrons and holes, as seen in the

following:

Ce4þ þ e� ! Ce3þ

Ce3þ þO2 ! O�
2 þ Ce4þ

It can also be shown that the Ce 4f level in (Ce, Ag) co-
doped ZnO plays a significant role in the conversion and

inhibition of electron-hole recombination of interfacial
charges. The UV–Vis-spectrum reveals that Ag and Ce co-
doping increases the visible light absorption of ZnO and

produces more electron-hole pairs under solar light
irradiation, which aims to enhance the photocatalytic func-
tion of the photocatalyst (Ce, Ag) co-doped ZnO.

Ce4þ quickly captures the electron, and it serves as an
electron scavenger. The coexistence of Ce3þ and Ce4þ in
(Ce, Ag) co-doped ZnO affect the photo-reactivity by alter-
ing the recombination of electron-hole pairs. In addition,

the trapping aspect of Ag and Ce4þ/Ce3þ sites is conse-
quently passed to the adjacent adsorbed O2 to create a
significant number of radical superoxide anions. At the

same time, ZnO’s VB holes react with water to generate
highly reactive hydroxyl (OH�) radical compounds. Dye oxi-
dation is caused by the strongly reactive superoxide radical

anion and hydroxyl radicals. The increase in the production
of O2 and OH by Ce and Ag increases the photocatalytic
activity of (Ce, Ag)/ZnO (Subash et al. ).
CONCLUSION

With the synthesis of pure and (Ce, Ag) co-doped ZnO by

solvothermal method, the presence of Ce and Ag co-doped
ZnO has been revealed by XRD. The pure ZnO exhibited
good photocatalytic activity with a degradation of 77.77%

for tartrazine at pH¼ 9. The (Ce, Ag)/ZnO catalyst
exhibited outstanding photocatalytic activity for the
photodegradation of tartrazine under sunlight at different

pH¼ 3, 6, and 9, and the different concentrations of the
pollutant (10.20 mg/L and 30 mg/L). The improved photo-
catalytic output of (Ce, Ag)/ZnO could be due to the
narrowing of ZnO band gap energy resulting from the effi-

cient high charge separation. The (Ce, Ag)/ZnO catalyst
was found to be highly efficient and recyclable and therefore
reusable. The excellent photocatalytic properties of (Ce,

Ag)/ZnO for degradation of tartrazine to the extent of
98.91% has been found within 90 min under solar
://iwaponline.com/wst/article-pdf/83/9/2118/888847/wst083092118.pdf
irradiation. (Ce, Ag)/ZnO therefore has potential and can

act as an efficient catalyst for the degradation of tartrazine.
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